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This is Part 2 of a two-part review summarising current knowledge on biomarkers of atherosclerosis. Part 1

addressed serological biomarkers. Here, in part 2 we address genetic and imaging markers, and other

developments in predicting risk. Further improvements in risk stratification are expected with the addition

of genetic risk scores. In addition to single nucleotide polymorphisms (SNPs), recent advances in epige-

netics offer DNA methylation profiles, histone chemical modifications, and micro-RNAs as other promising

indicators of atherosclerosis. Imaging biomarkers are better studied and already have a higher degree of

clinical applicability in cardiovascular (CV) event prediction and detection of preclinical atherosclerosis.

With new methodologies, such as proteomics and metabolomics, discoveries of new clinically applicable

biomarkers are expected.
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Table 1 Coronary artery disease genomic-wide asso-
ciation studies identified loci. Adopted and modified
from CARDIoGRAMplusC4D Consortium meta-analy-
sis [100].

ChrSNP AlleleAllele freqOR Known locus

6 rs3798220 C/T 0,02 1.42SLC22A3-LPAL2-LPA

9 rs4977574 G/A 0,49 1.219p21

22 rs180803 G/T 0,97 1.20POM121L9P-ADORA2A

9 rs3217992 T/C 0,39 1.149p21

2 rs6725887 C/T 0,11 1.14WDR12

7 rs3918226 T/C 0,06 1.14NOS3

1 rs17114036A/G 0,92 1.13PPAP2B

12 rs11830157G/T 0,36 1.12KSR2

21 rs9982601 T/C 0,13 1.12KCNE2 (gene desert)

1 rs646776 T/C 0,75 1.11SORT1

6 rs12526453C/G 0,71 1.10PHACTR1

15 rs8042271 G/A 0,90 1.10MFGE8-ABHD2

2 rs16986953A/G 0,1 1.09AK097927

19 rs445925 G/A 0,9 1.09APOE-APOC1
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Introduction
This is Part 2 of a two-part narrative review of risk factors in

the pathogenesis of atherosclerosis, Part 1 addressed sero-

logical biomarkers. Here, in part 2, we review knowledge of

other biomarkers, including genetic and imaging markers.

Our literature search strategy was described in Part 1, and

involved a PubMed search using the terms ‘‘atherosclerosis”,

‘‘markers”, ‘‘biomarkers”, ‘‘coronary artery disease”,

‘‘serum”, ‘‘inflammatory”, ‘‘oxidative stress”, ‘‘endothelial

dysfunction”, ‘‘novel”, ‘‘genetic”, ‘‘genomic-wide associa-

tion studies”, ‘‘GWAS”, ‘‘epigenetics”, ‘‘DNA methylation”,

‘‘histone chemical modifications”, ‘‘micro RNA”, ‘‘miRNA”,

‘‘ultrasonographic”, ‘‘carotid intima-media thickness”,

‘‘proteomics”, ‘‘metabolomics” in different combinations

connected with Boolean operators AND and OR.

Appropriate articles were selected depending on abstract

and reviewed in three different sections: serum biomarkers

(Part 1); and genetic biomarkers and imaging biomarkers

(Part 2).

10 rs501120 T/C 0,81 1.08CXCL12

1 rs17465637C/A 0,66 1.08MIA3

15 rs7173743 T/C 0,56 1.08ADAMTS7

17 rs7212798 C/T 0,15 1.08BCAS3

1 rs11206510T/C 0,85 1.08PCSK9

10 rs12413409G/A 0,89 1.08CYP17A1-CNNM2-NT5C2

7 rs11556924C/T 0,69 1.08ZC3HC1

9 rs579459 C/T 0,21 1.08ABO

19 rs1122608 G/T 0,77 1.08LDLR

15 rs56062135C/T 0,79 1.07SMAD3

4 rs7692387 G/A 0,81 1.07GUCY1A3

13 rs9515203 T/C 0,76 1.07COL4A1/A2

10 rs1412444 T/C 0,37 1.07LIPA

19 rs2075650 G/A 0,13 1.07APOE-APOC1

2 rs515135 C/T 0,79 1.07APOB

3 rs9818870 T/C 0,14 1.07MRAS

11 rs974819 T/C 0,33 1.07PDGFD

12 rs3184504 T/C 0,42 1.07SH2B3

4 rs17087335T/G 0,21 1.06REST-NOA1

11 rs10840293A/G 0,55 1.06SWAP70

18 rs663129 A/G 0,26 1.06PMAIP1-MC4R

4 rs1878406 T/C 0,16 1.06EDNRA

2 rs1561198 T/C 0,46 1.06VAMP5-VAMP8-GGCX

6 rs2048327 C/T 0,35 1.06SLC22A3-LPAL2-LPA

10 rs2505083 C/T 0,4 1.06KIAA1462

10 rs2047009 G/T 0,48 1.06CXCL12

1 rs17464857T/G 0,86 1.06MIA3

5 rs273909 G/A 0,12 1.06SLC22A4-SLC22A5

7 rs2023938 C/T 0,1 1.06HDAC9

8 rs264 G/A 0,85 1.06LPL

6 rs12190287C/G 0,62 1.06TCF21

6 rs10947789T/C 0,78 1.05KCNK5

7 rs10953541C/T 0,78 1.057q22

11 rs964184 G/C 0,18 1.05ZNF259-APOA5-APOA1

13 rs4773144 G/A 0,43 1.05COL4A1/A2

1 rs4845625 T/C 0,45 1.05IL6R

2 rs6544713 T/C 0,32 1.05ABCG5-ABCG8
Genetic Biomarkers
It is now widely accepted that genetics play an important role

in the pathogenesis of atherosclerosis. In contrast to rare

monogenic diseases, e.g. familial hypercholesterolaemia

resulting in generalised atherosclerosis, coronary artery dis-

ease (CAD) is a multifactorial disease with variable genetic

contribution of multiple loci.

Single Nucleotide Polymorphim (SNP)
Thus far, genomic-wide association studies (GWAS) have

identified 58 independent loci associated with CAD

(Table 1) together contributing approximately 13.3% to

CAD heritability [1]. Most identified loci have low allele

frequency (<5%) with minor contributions to CAD devel-

opment. Their exact function is known only for some of

them and is related to inflammatory response, oxidative

stress regulation, lipid function, transportation, endothe-

lial dysfunction and other pathogenic processes involved

in atherosclerosis. Lp(a) single nucleotide polymorphism

(SNP) locus is currently the most potent known contribu-

tor, but also one of the rarest. For many loci there is no

known function, the most debated one being 9p21, which

lies almost a 100 kb from the nearest known protein coding

gene [2–4].

The individual SNP’s contribution to risk stratification is

negligible, despite being significantly associated with CAD

risk. Therefore, many studies have investigated the influ-

ence of multiple SNPs testing in regard to risk stratification,

but results were mostly still not satisfactory. Studies agree

that, when more SNPs are included, better prediction is

possible and that, with newly discovered SNPs, prediction

is going to improve. A recent study [5] tested 49310 SNPs

derived from CARDIoGRAMplusC4D Consortium meta-

analysis [1] and reported the ability to reclassify subjects
Please cite this article in press as: Tibaut M, et al. Markers of Atherosclerosis: Part 2–Genetic and Imaging Markers. Heart,
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Table 1. (continued).

ChrSNP AlleleAllele freqOR Known locus

15 rs17514846A/C 0,44 1.05FURIN-FES

17 rs216172 C/G 0,35 1.05SMG6

8 rs2954029 A/T 0,55 1.04TRIB1

10 rs11203042T/C 0,45 1.04LIPA

12 rs7136259 T/C 0,43 1.04ATP2B1

13 rs9319428 A/G 0,31 1.04FLT1

14 rs2895811 C/T 0,41 1.04HHIPL1

17 rs46522 T/C 0,51 1.04UBE2Z

6 rs4252120 T/C 0,74 1.03PLG

2 rs2252641 C/T 0,48 1.03ZEB2-ACO74093.1

17 rs12936587G/A 0,61 1.03RAI1-PEMT-RASD1

6 rs17609940G/C 0,82 1.03ANKS1A

6 rs6903956 A/G 0,35 1.00ADTRP-C6orf105

19 rs12976411T/A 0,09 0.67ZNF507-LOC400684
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from an intermediate risk group in the Framingham Risk

Score (FRS) and American Cardiology College/American

Heart Association 2013 (ACC/AHA13) score. Most

recently, Wang et al. analysed whether the associations

of SNPs with fasting lipoprotein subfractions in Euro-

pean-Americans are consistent across ethnicities with a

non-European ancestry within the Multi-Ethnic Study of

Atherosclerosis (MESA) study. Results showed that genetic

associations with lipoprotein subfraction measures differ

by ethnicity. Authors pointed to the importance of ethnicity

in genetic risk for cardiovascular disease (CVD) and high-

light the need to identify ethnicity-specific genetic variants

associated with CVD risk [6].

Epigenetics
Another interesting field in genetics, regarding biomarkers

of atherosclerosis, is epigenetics. A plethora of environmen-

tal risk factors may result in epigenetic modifications with

abnormal phenotypic expression of genetic information.

Exposure to various environmental pollutants induce epi-

genetic alterations of gene expression relevant to the onset

or progression of CVD [7,8]. It is well described that CVDs,

including atherosclerosis, can arise at the early stages of

development and growth during pregnancy [9,10]. Fetal

exposure to high-fat diet or dietary imbalance [11–13], ges-

tational diabetes [14–16], maternal obesity [14,15], and

smoking [17–22] are associated with increased risk and

progression of atherosclerosis. For example, healthy off-

spring exposed to maternal diabetes during pregnancy

demonstrated substantially increased levels of circulating

cellular adhesion molecules, which are biomarkers of

adverse endothelium perturbation and may be related to

the earliest preclinical stages of atherosclerosis and also

diabetes [16]. Epigenetics consists of three mechanisms that

are interrelated [23]. They include DNA-based modifica-

tions, the histone modifications, and RNA-based mecha-

nisms (Figure 1).
Please cite this article in press as: Tibaut M, et al. Markers of At
Lung and Circulation (2018), https://doi.org/10.1016/j.hlc.2018
Several papers described altered DNA methylation and

atherosclerosis [24]. Greißel et al. [136] summarised that

DNA methylation and expression of some corresponding

methyltransferases are significantly altered in atherosclero-

sis, suggesting a possible contribution of epigenetics in dis-

ease development. Ma et al. [26] aimed to identify an effective

method for detecting early–phase atherosclerosis, as well as

to provide useful DNA methylation profiles to serve as

biomarkers for the detection of atherosclerosis. They found

that the atherosclerosis-specific promoter methylation of

TIMP metallopeptidase inhibitor 1 (TIMP1), ATP binding

cassette subfamily A member 1 (ABCA1), and acetyl-CoA

acetyltransferase 1 (ACAT1) may serve as a valuable bio-

marker for the early detection of atherosclerosis. Results of

another clinical study suggested that altered aryl hydrocar-

bon receptor repressor methylation in monocytes, a cell type

sensitive to cigarette smoking and involved in atherogenesis,

represents a potential biomarker of subclinical atherosclero-

sis in smokers [27]. There are several other biofactors associ-

ated with atherosclerosis. Deficiency of folic acid has been

epigenetically linked to endothelial dysfunction and differ-

ent aspects of CVDs, including atherosclerosis [28]. Similarly,

homocysteinuria has been linked with impaired endothelial

function through compromised VEGF/Akt/endothelial

nitric oxide synthase signalling [29]. Moreover, the findings

of Kim et al. [30] provide evidence of epigenetic dysregula-

tion of oestrogen receptor beta in atherosclerosis and vascu-

lar ageing.

Histone chemical modifications seem to play an important

role in atherosclerosis. Recently, histone acetylations and

methylations in the smooth muscle cells (SMCs) within ath-

erosclerotic plaques from vessels at different stages of ath-

erosclerosis were determined by Greißel et al. [31] Increased

histone acetylation was observed on H3K9 and H3K27 in

SMCs in advanced atherosclerotic lesions. H3K9 acetylations

in SMCs and macrophages were associated with plaque

severity of atherosclerosis. Methylations of H3K9 and

H3K27 were reduced in SMCs and inflammatory cells and

methylation on H3K4 was associated with the severity of

atherosclerosis. Moreover, the expressions of some types of

histone acetyltransferases and methyltransferases correlated

with the severity of atherosclerosis. Data from another study

showed a reduction in global levels of the H3K27Me3 modi-

fication in vessels with advanced atherosclerotic plaques

[32]. One of the important endothelial genes relevant for

angiogenesis and also atherosclerosis that is regulated by

the histone chemical modifications is NOS3, coding endothe-

lial nitric oxide synthase (eNOS). Based on novel data, it

seems that histone deacetylase 5, which plays an important

role in the Krüppel-like factor 2 activation and thus eNOS

expression increase, could be a new biomarker and thera-

peutic target to prevent vascular endothelial dysfunction

associated with atherosclerosis [33].

MicroRNAs (miRNAs) are a class of short, non-coding,

regulatory RNA molecules which play an important role in

intracellular communication and cell signalling and belong

to the most important epigenetic risk factors for the
herosclerosis: Part 2–Genetic and Imaging Markers. Heart,
.09.006
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Figure 1 The relevance of epigenetics in the atherosclerosis.
Epigenetic biomarkers of atherosclerosis consist of three distinct processes: DNA methylation, histone protein methylation
and acetylation, and RNA mechanisms including activity of mi-RNA.
Abbreviations: Ac, acetylation; DNMTs, methyltransferases; Me, methylation.
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development of CVDs [34,35]. Among many other physio-

logic and pathophysiologic functions, miRNAs play an

important role in the development and regression of athero-

sclerosis. miRNAs target genes involved in HDL metabolism,

directly target macrophages, and promote expression of cell

adhesion molecules, chemokines etc. [36]. Numerous studies

have found different miRNAs to be associated with athero-

sclerosis. A recent review reported miR-1, miR-133a, miR-

208a, miR-208b and miR-499 levels associated with acute

myocardial infarction and miR-17, miR-92a, miR-126, miR-

133, miR-140, miR-145, miR-155, miR-182 and miR-208a lev-

els associated with chronic heart disease (CHD) [37]. Most

current data from the MESA study revealed that lower cir-

culating miR-221, miR-155, and miR-130a were potential risk

factors for CHD. Results showed that miR-130a seems to be

an independent predictor for atherosclerosis. In addition,

associations between miR-221, miR-155 and miR-130a were

evaluated. miR-130a and miR-155 showed positive associa-

tion, moreover, the proportion of CHD attributable to the

interaction between miR-130a and miR-155 was as high as

22%. miR-221 and miR-130a manifested a negative interac-

tion [38]. Several other miRNAs have been described to

modulate the function of endothelial cells (miR-221/222

and �126), vascular smooth muscle cells (miR-143/145)

and macrophages (miR-33, �758, and �26), thereby regulat-

ing the initiation and progression of atherosclerosis [39]. In

contrast to SNPs, epigenetic modifications and miRNA inhi-

bition are reversible and, therefore, carry a great promise for

targeted therapy. Nonetheless, each miRNA may control 100

mRNAs, thus rigorous connection of one miRNA to specific

process as atherosclerosis yet seems impossible. Targeted

therapy including anti-sense oligonucleotides as well as

microRNA mimetics and inhibitors is increasingly being

developed [37,36].

New promising serologic and genetic biomarkers that pro-

vide significant diagnostic and prognostic information about

the cardiovascular risk prediction and atherosclerosis are

summarised in Table 2.
Please cite this article in press as: Tibaut M, et al. Markers of At
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Quantitative Imaging
Ultrasound has a variety of established clinical uses

including detection of preclinical atherosclerosis by mea-

suring carotid intima-media thickness (cIMT), carotid

plaque presence and evaluating the brachial artery flow

mediated dilatation and arterial stiffness (Figure 2).

Moreover, coronary artery calcium score and ankle bra-

chial index are proposed as valid markers of atheroscle-

rosis risk evaluation. It has been proposed that these

parameters might usefully predict vascular events. In this

regard, the BioImage Study tested novel approaches in a

typical health-plan population [66]. A total of 7687 men

(55 to 80 years of age) and women (60 to 80 years of age)

without evidence of atherothrombotic disease, but antici-

pated to be at risk for near-term atherothrombotic events,

were included. Baseline scrutiny consists of evaluating

the cardiovascular risk factors and screening for subclin-

ical (asymptomatic) atherosclerosis. The quantification of

selected biomarkers included coronary artery calcifica-

tion (by computed tomography), intima-media thickness,

carotid atherosclerotic plaques, and abdominal aortic

aneurysm (by ultrasound), and ankle brachial index.

Individuals with one or more abnormal screening test

results underwent advanced imaging with contrast-

enhanced magnetic resonance imaging for carotid and

aortic plaques, contrast-enhanced coronary computed

tomography (CT) angiography for luminal stenosis and

noncalcified plaques, and 18F-fluorodeoxyglucose-posi-

tron emission tomography/CT for carotid and aortic pla-

que inflammation. Moreover, plasma, PAXgene RNA,

and DNA samples were collected, frozen, and stored

for future analyses. The purpose of The BioImage Study

is based on the identification of patients with subclinical

atherosclerosis who are at risk for near-term athero-

thrombotic events, consequently, this study can provide

more personalised management for these individuals

[66]. Recent outcomes of this study showed that the
herosclerosis: Part 2–Genetic and Imaging Markers. Heart,
.09.006
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Table 2 New promising biomarkers of cardiovascular risk prediction and atherosclerosis.

Biomarker Predictive ability Ref.

High-sensitivity C-reactive protein "risk for CV events and mortality [40,41]

Fibrinogen "risk of premature atherosclerosis [42,43]

Apolipoprotein-associated

phospholipase A2

correlates with the coronary HD and its severity [44–46]

Matrix metalloproteinases markers of plaque vulnerability and subclinical atherosclerosis,

predictors of CVD and mortality

[47–51]

Myeloperoxidase early detection of subclinical CAD, its severity, diagnosis of MI, [52,53]

Endothelin-1 correlates with increased CAD and ACS risk and severity [54–56]

Natriuretic peptides "risk for CV events and mortality [57,58]

High-sensitivity assays for cardiac troponin predictor of HF, mortality, and incident coronary HD [59–62]

Pregnancy-associated plasma protein-A marker of plaque vulnerability and predictor of CVD and mortality [63]

Growth differentiation factor 15 predictor of CV and all-cause mortality, unstable AP [64,65]

Micro-RNAs association with the acute MI, predictor of atherosclerosis [25,37]

Abbreviations: ACS, acute coronary syndrome; AP, angina pectoris; CAD, coronary artery disease; CV, cardiovascular; CVD, cardiovascular disease; HD, heart

disease; HF, heart failure; MI, myocardial infarction.

Figure 2 Ultrasonographic biomarkers of atherosclerosis.
Carotid intima-media thickness. The measurement of the common carotid artery intima and media combined layers is
determined by high-resolution B-mode ultrasonography. This biomarker is an effective tool in the identification of
subclinical and asymptomatic atherosclerotic vascular disease. Carotid plaque. Carotid plaques are evaluated by both
qualitative (visual) and quantitative methods. Plaque may be characterised by its presence or absence, location, thickness,
number, irregularity (smooth, irregular, or ulcerated), area, and echodensity (echolucent or echogenic). Quantification of
carotid plaques is an important marker of increased cardiovascular event risk. Flow-mediated dilatation of the brachial artery is
an appropriate method for non-invasive evaluation of systemic endothelial function. Endothelial dysfunction is one of
several signs of atherogenesis and correlates with many cardiovascular risk factors. Arterial stiffness. Measurement of arterial
stiffness is a sensitive biomarker of atherosclerosis and cardiovascular risk due to its principal pathophysiological mechan-
isms. Several factors, such as endothelial dysfunction, altered vascular smooth muscle cell function, vascular inflammation,
or genetic determinants are clearly associated with the arterial stiffness.

Atherosclerosis: Genetic and Imaging Markers 5
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detection of subclinical carotid or coronary atherosclero-

sis improves risk predictions and reclassifications in com-

parison with the conventional risk factors, with

comparable results for either modality. The definition

of cost-effectiveness warrants future evaluations with

the aim to find the optimal role of these complementary

screening methods [67].

Carotid Intima-Media Thickness (cIMT)
Carotid intima-media thickness (cIMT) is an easily obtain-

able, noninvasive and reproducible measurement using B-

mode ultrasound, although no global standard for its mea-

surement exists. It is defined as the distance between lumen-

intima and adventitia-media borders [68]. At first, many

studies reported positive correlation with CAD and stroke

risk, one of first meta-analysis even showed cIMT to be a

strong predictor of future vascular events [69]. The Athero-

sclerosis Risk in Communities (ARIC) study [70] reported

that an increase in cIMT for 1.9 mm increases the risk of

myocardial infarction (MI) or sudden cardiac death by

36%. Another study reported nearly 10% net reclassification

improvement of intermediate risk patients. cIMT has also

been reported to decrease with statin therapy [68], while, on

the contrary, a large meta-analysis showed its improvement

did not predict CV events reduction [71]. Similar observa-

tions were made in the general population [72]. In contrast to

the ARIC study, recent meta-analyses have shown no signif-

icant benefit if added to risk prediction [73]. Firstly, 2010

ACC/AHA guidelines recommended cIMT measurements

for risk assessment, but, in 2013, ACC/AHA guidelines

recommendation was withdrawn and, instead, stated that

cIMT measurements are not recommended for routine clini-

cal use in prediction of a first CV event [74]. Again, in contrast

to the ACC/AHA, 2012 European guidelines recommend

cIMT measurements in individuals with a 10-year risk of

fatal cardiovascular disease between 1% and 5%—those at

intermediate cardiovascular risk and in individuals with

arterial hypertension as a sign of end-organ damage [74].

In a nutshell, cIMT is a strong predictor of CV events and

preclinical atherosclerosis, but its clinical significance

remains controversial. Unification of measurement method-

ology is needed.

Carotid Plaque
The definition of carotid plaque differs among studies, i.e.

local thickening of the cIMT of >50% compared to the sur-

rounding vessel wall, a cIMT >1.5 mm, or local thickening

>0.5 mm [75]. Different studies used different modalities for

carotid plaque determination as carotid total plaque area,

total plaque volume, three-dimensional (3D) based ultra-

sound approach or just its presence [68,75]. Several studies

have shown that the presence of carotid plaques is better than

the cIMT for predicting CV events regardless of cIMT

[73,76,77]. This could be because carotid plaque may repre-

sent a later stage of atherosclerosis. Moreover, it was reported

that, among sonographic markers, carotid plaque burden is

most strongly associated with coronary artery calcium score
Please cite this article in press as: Tibaut M, et al. Markers of At
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(a well established predictor of CV events) [75]. According to

ESC guidelines, plaque presence is also a marker of target

organ damage in hypertension [74].

Brachial Flow-Mediated Dilation
Endothelial dysfunction is a well-established initial step in the

pathogenesis of atherosclerosis. One of the ways of its assess-

ment is by measuring flow-mediated dilatation (FMD). This

technique has been widely used on the brachial artery in a vast

number of studies, as well as studies investigating its connec-

tion with preclinical atherosclerosis and risk assessment. Bra-

chial FMD is defined as a change in brachial artery diameter in

response tohyperaemia.Hyperaemia isachievedbyfirst inflat-

ing an arm cuff to supra-systolic blood pressure level and then

deflating it. As a result, blood flow burst increases shear stress

and causes release of NO from endothelial cells with conse-

quent dilatation of the brachial artery. Artery diameter is

quantified using high-resolutionultrasound beforeandduring

hyperaemia and FMD is calculated [78,79]. Most prospective

studies reported inverse association with brachial FMD, but

not all studies were in agreement. Finally, two large meta-

analyses reported consistent 13% [78] and 8% [79] overall risk

reductionper 1%higher FMD,and meta-analysisalso included

asymptomatic subjects within diseased populations yielding

stronger association. However, both studies mentioned low

reproducibility of FMD measurements as the main disadvan-

tage for its wide clinical use and as a reason for possible

weakened association with CVD, therefore standardisation

of the FMD technique is required.

Arterial Stiffness
Arterial stiffness is increasingly recognised to have a role in

CV disease development, especially in arterial hypertension

[80]. It can be measured by invasive methods and noninva-

sively using relatively reproducible ultrasound measure-

ments. European Society of Cardiology 2013 guidelines

[80] consider the carotid-femoral (aortic) pulse wave velocity

(aPWV) to be the ‘gold standard’ for measuring aortic stiff-

ness. An expert consensus suggested 10 m/s for the thresh-

old value. A large number of small, prospective studies have

shown a positive correlation of aPWV with cardiovascular

risk. The latest meta-analysis [81] of 17,635 subjects has

reported a 23–30% increased risk for CHD, stroke and CV

events after adjustment for conventional risk factors and

shown that the use of aPWV improved risk prediction by

13% in intermediate risk individuals. APWV may, therefore,

serve as a useful biomarker in clinical settings but random-

ised controlled trials are still needed.

Coronary Artery Calcium Score
The coronary artery calcium score (CACS) is a measurement

of the amount of calcium in the walls of the coronary arteries

using a special CT. CACS is a well-established predictor of

CV events [82]. A clinical study including more than 85,000

subjects has demonstrated that the absence of CACS is

linked with a very low risk of cardiovascular events in

the future [83]. The CACS plays an important role in
herosclerosis: Part 2–Genetic and Imaging Markers. Heart,
.09.006
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cardiovascular risk stratification, demonstrating a signifi-

cant linkage with the medium- or long-term occurrence of

major cardiovascular events, such as all-cause mortality,

cardiac mortality, and nonfatal myocardial infarction [84].

The CACS was analysed in association with other well-

defined traditional risk score systems, mainly the Framing-

ham Risk Score. The CACS provides an advantage regard-

ing the independent added value in the prediction of all-

cause mortality and mortality due to coronary disease in

asymptomatic individuals [85]. In addition, CACS is useful

in reclassification within the category of coronary artery

disease risk (60% of atherosclerotic coronary events) occur-

ring in subjects classified at low or medium risk according to

the FRS. Well-established indications for the use of the

CACS comprise the stratification of general CV risk for

asymptomatic patients. It includes intermediate-risk indi-

viduals based on the FRS (class I); low risk based on a family

history of early CAD (class IIa); and low-risk patients with

diabetes (class IIa). The application of the CACS as the only

method is limited in symptomatic patients. In these patients,

it should serve as a proper tool to choose the best method to

facilitate the diagnosis [84]. In diabetic patients, CACS

allows the identification of the greatest risk in subjects,

who could profit from screening for silent ischaemia and

more aggressive therapy.

Computed Tomography Coronary
Angiography
Computed tomography coronary angiography (CTCA)

allows detection of noncalcified plaque coronary artery

stenosis severity. It demonstrates excellent accuracy to

identify and mainly exclude the presence of significant

obstructive lesions [86]. Clinical data showed that CTCA

provides incremental prognostic utility for prediction of

mortality and non-fatal myocardial infarction for asymp-

tomatic individuals with moderately high CACS, but not

for lower or higher CACS [87]. Most recently, CTAC

improved the prognosis of 6-year all-cause mortality

beyond a set of conventional risk factors alone; however,

no further incremental value was found by CCTA when

CCTA data were added to a model incorporating conven-

tional risk factors and CACS [88]. Min et al. [89] assessed

whether CTCA-detected CAD is able to improve the risk

assessment of asymptomatic diabetic individuals beyond

clinical risk factors and CACS. CTCA manifested incre-

mental risk prediction, discrimination, and reclassification

on a per-patient, per-vessel, and per-segment basis. In

another study, CACS has been found inadequate for the

detection of obstructive and non-obstructive CAD com-

pared with CTCA [90]. Moreover, Parson et al. [91] con-

cluded that CTCA is a more efficacious approach to CAD

evaluation when compared with CACS.

The clinical data discussed above demonstrated that

CTCA provides incremental prognostic information to tradi-

tional risk factors and CACS. Thus, CTCA and CACS might

serve as important complementary tools for CV risk stratifi-

cation in asymptomatic patients [88].
Please cite this article in press as: Tibaut M, et al. Markers of At
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Ankle Brachial Index
Evaluation of ankle brachial index (ABI) by ultrasound

Doppler is the standard screening method for the detection

of atherosclerosis in peripheral arterial disease patients. It is

measured as the ratio of the blood pressure at the ankle to

the blood pressure in the brachium. ABI is a significant

indicator of atherosclerosis with the potential to improve

the prediction of CVD events. Low ABI (<0.9) is associated

with a higher risk of CHD, stroke, transient ischaemic

attack, progressive renal insufficiency, and all-cause mor-

tality [92]. The Ankle Brachial Index Collaboration Group

[93] assessed if the ABI provides information on the risk of

CV events and mortality independently of the FRS and if it

can improve the risk prediction. The authors included 16

population cohort studies in the evaluation. A low ABI was

linked with approximately twice the 10-year total mortality,

cardiovascular mortality, and major coronary event rate in

comparison with the overall rate in each FRS category. The

authors found that the inclusion of the ABI in CV risk

stratification using the FRS would result in reclassification

of the risk category that is followed by treatment modifica-

tions; this was observed in 19% of men and 36% of women.

Fowkes et al. [94] analysed the participant data from 18

cohorts where 24,375 men and 20,377 women were free of

CHD with the ABI measurement. Subsequently, the partic-

ipants were followed up for CV events. The authors con-

cluded that the ABI risk model may improve prediction

especially in individuals at intermediate risk and when

performance of the base risk factor model is moderate.

Based on data from Atherosclerosis Risk in Communities

Study (11,594 individuals included), Murphy et al. [95] did

not show clear evidence which supports the FRS modifica-

tion after including the ABI as an independent predictor of

atherosclerosis.
Biomarker Discovery And
The ‘‘-OMICS”
Traditional techniques of protein biomarker discovery

include immunological detection methods such as Western

blots and ELISAs and detection of miRNAs currently depend

on PCR [96–98]. These methods allow research on a relatively

small number of molecules with a relatively small and insig-

nificant contribution to risk stratification. Technological

improvements in automated analytical methodologies allow

analyses of the entire proteome, metabolome, lipidome or

transcriptome. Omics assess the net biological effect of the

investigated ‘‘-ome”. Omics, although more expensive, have

the potential to effectively detect more biomarkers or their

combination (multi-markers panel) and thus improving their

total contribution to risk stratification.

Transcriptomics approach utilises RNA identification

using microarray analyses through the genome-wide study

of RNA expression [96] of body fluids or histological speci-

mens of atherosclerotic plaques, endothelial cells, smooth

muscle cells, extracellular matrix [97], etc.
herosclerosis: Part 2–Genetic and Imaging Markers. Heart,
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Proteomics allow analysis of all proteins expressed in

target tissue or blood, which can then be compared to

non-diseased tissue e.g. atherosclerotic plaque compared

to normal arterial wall. Nowadays, proteomic analyses are

carried out with mass spectrometry approaches. Generally,

two approaches are possible. The first is untargeted, which

results in a list of present proteins, the second is a pre-

selected panel of proteins which are measured with high

precision (high sensitivity). The combination of both

approaches seems to be the best strategy for biomarker dis-

covery [96,98,99].

Metabolites are small molecule intermediates and prod-

ucts of cellular metabolism [99]. Metabolomics analyses the

metabolite profile in plasma or tissues mainly using magnetic

resonance spectroscopy (MRS) or nuclear magnetic reso-

nance spectroscopy [98]. The association of some amino acids

with atherosclerosis has already been shown [100]. On the

other hand, lipidomics, a subset of metabolomics, analyses

not only triglycerides, high density lipoprotein (HDL), low

density lipoprotein (LDL), and total cholesterol, but also all

other lipids–lipidome [98]. Knowing that lipids greatly con-

tribute to process of atherosclerosis, lipidomics shows great

promise in new biomarker identification.
Family History
Family history (FH) of premature CAD is a risk factor for the

development of incident CV disease. However, based on a

plethora of clinical data, the linkage between FH and clinical

results in subjects with confirmed CAD is unclear. Recently,

results from several trials have suggested that a genetic risk

score (GRS) for CAD seems to be independent of FH in

predicting of CV events in the future. Abdi-Ali et al. assessed

the relation between FH of premature CAD and all-cause

mortality using multivariable Cox proportional hazards

regression[101]. FH of premature CAD was associated with

reduced all-cause mortality over a median 5.6 years in fol-

low-up (hazard ratio [HR] 0.77 [95% CI 0.73–0.80]). Results

showed the silencing of the linkage with increasing age, but

FH remained protective even in individuals aged older than

80 years (HR 0.86 [0.77–0.95]). The authors concluded that

self-reported FH of premature CAD is linked with improved

long-term survival rate, independent of clinical character-

istics, mode of presentation, and extent of disease. Sivapalar-

atnam et al. concluded that, although FH of premature CHD

was found to be an independent risk factor of future CHD, its

application did not improve the classification of individuals

into clinically relevant risk categories based on the FRS[102].

Hindieh et al. aimed to evaluate if the presence of CV risk

factors, either individually or together, is linked with an

elevated burden of angiographic CAD[103]. Researchers

enrolled 763 patients (within the GENESIS-PRAXY study)

with premature acute coronary syndrome (ACS) (median

age, 50/46–53/years; 30.8% women) with at least one major

epicardial vessel stenosis. Results demonstrated that the

presence of either a high GRS or FH is related to greater
Please cite this article in press as: Tibaut M, et al. Markers of At
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severity of CAD in patients with premature ACS. According

to the authors, it is questionable whether the preventive

clinical strategies targeted to genetically predisposed indi-

viduals could decrease the risk of early ACS and the resolv-

ing of this query warrants further clinical evaluations.
Can Newer Risk Markers
Improve Risk Prediction?
The important question for the preventative cardiologist is

whether the newer risk markers for atherosclerosis could

improve CHD risk prediction. There are several recent clini-

cal studies evaluating the potential improvements in CHD

risk prediction with the use of newer risk markers.

Regarding the urinary and serum biomarkers, Takahashi

et al. [104] analysed the predictive ability of three CVD

biomarkers: the urinary albumin-creatinine ratio (UACR),

plasma B-type natriuretic peptide concentration (BNP),

and serum high-sensitivity C-reactive protein concentration

(hsCRP) for identifying the incidence of disability as future

recipients of public long-term care (LTC) service. The risk

predictive performance for the incidence of LTC as evaluated

by an essential model (i.e. age- and sex-adjusted) was sub-

stantially improved by incorporating the UACR (net reclas-

sification improvement = 0.084, p < 0.01; integrated

discrimination improvement = 0.0018, p < 0.01). In two

remaining biomarkers the hazard ratios were not signifi-

cantly changed. In another study (the cohort included 5511

community-dwelling individuals), the significance of TIMP-

1, MMP-9, and hsCRP levels was evaluated in CV risk pre-

diction. The model of Cox proportional hazards regression

was based on the FRS variables. TIMP-1 and hsCRP demon-

strated the best continuous net reclassification improvement

over the baseline model for 5-year survival [net reclassifica-

tion index (NRI) 0.28 and 0.19, respectively, both p < 0.0001]

and for 10-year survival (NRI 0.19 and 0.11, respectively, both

statistically significant) [105]. In a prospective population-

based study, Kavousi et al. [80 = 106] evaluated whether

newer markers (NT-proBNP levels, von Willebrand factor

antigen levels, fibrinogen levels, chronic kidney disease, leu-

kocyte count, CRP levels, homocysteine levels, uric acid

levels, CACS, CIMT, peripheral arterial disease, and pulse

wave velocity) for CHD risk prediction and stratification

improve the FRS predictions. Moreover, traditional CHD

risk factors in the FRS such as age, sex, systolic blood pres-

sure, treatment of hypertension, total and HDL-cholesterol

levels, smoking, and diabetes were analysed in this study.

The coronary artery calcium score added to the FRS

improved the accuracy of risk predictions (c-statistic

increase, 0.05 [95% CI, 0.02–0.06]; net reclassification index,

19.3% overall [39.3% in those at intermediate risk, by FRS]).

Regarding the NT-proBNP measure, it also improved the risk

predictions but to a lesser extent in comparison with the

CACS (c-statistic increase, 0.02 [CI, 0.01–0.04]; net reclassifi-

cation index, 7.6% overall [33.0% in those at intermediate

risk, by FRS]). Using other, newer, markers, changes in risk
herosclerosis: Part 2–Genetic and Imaging Markers. Heart,
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predictions were insignificant. The authors pointed to certain

limitations of the study, i.e. that these results may not be

generalisable to younger or non-White individuals [106].

Moreover, the authors concluded that the use of CACS as

a more routine screening method for CV risk assessment

needs full consideration of the financial and clinical costs

within the health systems. Another clinical study evaluated if

the vascular and valvular calcification predicts incident

major CHD, CVD, and all-cause mortality independent of

Framingham risk factors in the community-based Framing-

ham Heart Study. The coronary artery calcium score clearly

improved the discriminatory value beyond risk factors for

CHD (area under the curve 0.78–0.82; net reclassification

index 32%, 95% CI 11–53) but not for CVD. CACS reclassified

85% of the 261 patients who were at intermediate (5–10%) 10-

year risk for CHD based on Framingham risk factors to either

low risk (n = 172; no events observed) or high risk (n = 53;

observed event rate 8%). These results demonstrated that

CACS improves the risk prediction and risk reclassification

for major CHD and CVD beyond risk factors in an asymp-

tomatic community and reclassifies 2/3 of the intermediate-

risk subjects [107]. Amato determined the independence of

carotid plaque thickness and mean common carotid intima-

media thickness in plaque-free areas (PF CC-IMTmean) in CV

risk prediction and risk stratification[108]. cIMTmax and PF

CC-IMTmean have been shown as independent predictors of

VEs. The reclassification evaluation revealed that PF CC-

IMTmean significantly adds to a model including both Fra-

mingham risk factors and cIMTmax (integrated discrimina-

tion improvement; IDI = 0.009; p = 0.0001) and vice-versa

(IDI = 0.02; p < 0.0001). The meta-analysis of Ohkuma

et al. revealed that the addition of brachial-ankle pulse wave

velocity to a model incorporating the FRS significantly ele-

vated the c statistics from 0.8026 to 0.8131 (p < 0.001), more-

over, it improved the category-free net reclassification (0.247;

p < 0.001[109]). Yeboah et al. analysed the reclassification

value of FMD for incident CVD events in the MESA study

[110]. The investigators summarised that the addition of

FMD to the FRS did not improve discrimination of subjects

at risk of CVD events, however, it significantly improved the

classification of individuals at low, intermediate, and high

CVD risk in comparison with the FRS alone.
Conclusion And Future
Directions
As we stated in Part 1 of our review, atherosclerosis is a major

contributor to morbidity and mortality worldwide. With ther-

apeutic consequences in mind, several risk scores are being

usedtodifferentiate individualswith low, intermediateorhigh

CV event risk. The most appropriate management of interme-

diate risk individuals is still not known, therefore novel bio-

markers arebeing sought to help re-stratify them as lowor high

risk. Proposed biomarkers are intertwined in inflammation,

oxidation, haemostatic and other processes involved in ath-

erosclerosis. Among novel biomarkers, hsCRP has emerged as
Please cite this article in press as: Tibaut M, et al. Markers of At
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most promising in chronic situations, others need further clin-

ical studies; however, it seems that a combination of serum

biomarkers offers more to risk stratification than either bio-

marker alone. Significant improvements in risk stratification

are expected with the further addition of genetic risk scores,

obtained by genetic testing of risk SNP’s presence. With more

discovered loci, the extent of reclassifications may improve. In

addition to SNPs, recent advances in epigenetics offer DNA

methylationprofiles, histonechemical modifications,and miR-

NAs as other promising indicators of atherosclerosis. A pleth-

ora of clinical studies have found an association between

exposure of various environmental factors during the life or

intrauterine period and increased occurrence ofbiomarkers for

atherosclerosis. Better understanding of the long-term influ-

ence of the environment to individuals should provide more

effective medical interventions to reduce the incidence of

CVDs. The occurrence of apparent genetic biomarkers of ath-

erosclerosis in high-risk individuals indicates an opportunity

for early prevention programs.

Contrary to serum and genetic biomarkers, ultrasonogra-

phy is better studied and already has a high degree of clinical

applicability. Carotid intima-media thickness, carotid plaque

detection, flow mediated dilatation and arterial stiffness

measurements can all be used in CV event prediction and

detection of preclinical atherosclerosis. All such methods can

also be readily and inexpensively obtained, with a high

degree of reproducibility.

The clinical value of any of these biomarkers may be

hindered by many factors such as individual variability, lack

of tissue specificity, differently used assays, sensitivity and

specificity, age, weight, renal function, gender or ethnic dif-

ferences [98], therefore large clinical studies with uniform

patient characteristics on different ethnicities are needed.

Moreover, with new methodologies (-omics) new panels of

biomarkers are expected with potentially stronger and inde-

pendent associations with atherosclerosis and contributions

to risk stratification.
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